111 research outputs found

    Model checking Quantitative Linear Time Logic

    Get PDF
    This paper considers QLtl, a quantitative analagon of Ltl and presents algorithms for model checking QLtl over quantitative versions of Kripke structures and Markov chains

    Linear and Branching System Metrics

    Get PDF
    We extend the classical system relations of trace\ud inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as elements of arbitrary metric spaces.\ud \ud Trace inclusion and equivalence give rise to asymmetrical and symmetrical linear distances, while simulation and bisimulation give rise to asymmetrical and symmetrical branching distances. We study the relationships among these distances, and we provide a full logical characterization of the distances in terms of quantitative versions of LTL and μ-calculus. We show that, while trace inclusion (resp. equivalence) coincides with simulation (resp. bisimulation) for deterministic boolean transition systems, linear\ud and branching distances do not coincide for deterministic metric transition systems. Finally, we provide algorithms for computing the distances over finite systems, together with a matching lower complexity bound

    Partial Preferences for Mediated Bargaining

    Full text link
    In this work we generalize standard Decision Theory by assuming that two outcomes can also be incomparable. Two motivating scenarios show how incomparability may be helpful to represent those situations where, due to lack of information, the decision maker would like to maintain different options alive and defer the final decision. In particular, a new axiomatization is given which turns out to be a weakening of the classical set of axioms used in Decision Theory. Preliminary results show how preferences involving complex distributions are related to judgments on single alternatives.Comment: In Proceedings SR 2014, arXiv:1404.041

    Irrelevant matches in round-robin tournaments

    Get PDF
    AbstractWe consider tournaments played by a set of players in order to establish a ranking among them. We introduce the notion of irrelevant match, as a match that does not influence the ultimate ranking of the involved parties. After discussing the basic properties of this notion, we seek out tournaments that have no irrelevant matches, focusing on the class of tournaments where each player challenges each other exactly once. We prove that tournaments with a static schedule and at least five players always include irrelevant matches. Conversely, dynamic schedules for an arbitrary number of players can be devised that avoid irrelevant matches, at least for one of the players involved in each match. Finally, we prove by computational means that there exist tournaments where all matches are relevant to both players, at least up to eight players

    Hedging Bets in Markov Decision Processes

    Get PDF
    The classical model of Markov decision processes with costs or rewards, while widely used to formalize optimal decision making, cannot capture scenarios where there are multiple objectives for the agent during the system evolution, but only one of these objectives gets actualized upon termination. We introduce the model of Markov decision processes with alternative objectives (MDPAO) for formalizing optimization in such scenarios. To compute the strategy to optimize the expected cost/reward upon termination, we need to figure out how to balance the values of the alternative objectives. This requires analysis of the underlying infinite-state process that tracks the accumulated values of all the objectives. While the decidability of the problem of computing the exact optimal strategy for the general model remains open, we present the following results. First, for a Markov chain with alternative objectives, the optimal expected cost/reward can be computed in polynomial-time. Second, for a single-state process with two actions and multiple objectives we show how to compute the optimal decision strategy. Third, for a process with only two alternative objectives, we present a reduction to the minimum expected accumulated reward problem for one-counter MDPs, and this leads to decidability for this case under some technical restrictions. Finally, we show that optimal cost/reward can be approximated up to a constant additive factor for the general problem

    From Quasi-Dominions to Progress Measures

    Get PDF
    We revisit the approaches to the solution of parity games based on progress measures and show how the notion of quasi dominions can be integrated with those approaches. The idea is that, while progress measure based techniques typically focus on one of the two players, little information is gathered on the other player during the solution process. Adding quasi dominions provides additional information on this player that can be leveraged to greatly accelerate convergence to a progress measure. To accommodate quasi dominions, however, non trivial refinements of the approach are necessary. In particular, we need to introduce a novel notion of measure and a new method to prove correctness of the resulting solution technique

    Qualitative Logics and Equivalences for Probabilistic Systems

    Full text link
    We investigate logics and equivalence relations that capture the qualitative behavior of Markov Decision Processes (MDPs). We present Qualitative Randomized CTL (QRCTL): formulas of this logic can express the fact that certain temporal properties hold over all paths, or with probability 0 or 1, but they do not distinguish among intermediate probability values. We present a symbolic, polynomial time model-checking algorithm for QRCTL on MDPs. The logic QRCTL induces an equivalence relation over states of an MDP that we call qualitative equivalence: informally, two states are qualitatively equivalent if the sets of formulas that hold with probability 0 or 1 at the two states are the same. We show that for finite alternating MDPs, where nondeterministic and probabilistic choices occur in different states, qualitative equivalence coincides with alternating bisimulation, and can thus be computed via efficient partition-refinement algorithms. On the other hand, in non-alternating MDPs the equivalence relations cannot be computed via partition-refinement algorithms, but rather, they require non-local computation. Finally, we consider QRCTL*, that extends QRCTL with nested temporal operators in the same manner in which CTL* extends CTL. We show that QRCTL and QRCTL* induce the same qualitative equivalence on alternating MDPs, while on non-alternating MDPs, the equivalence arising from QRCTL* can be strictly finer. We also provide a full characterization of the relation between qualitative equivalence, bisimulation, and alternating bisimulation, according to whether the MDPs are finite, and to whether their transition relations are finitely-branching.Comment: The paper is accepted for LMC

    Can Nondeterminism Help Complementation?

    Full text link
    Complementation and determinization are two fundamental notions in automata theory. The close relationship between the two has been well observed in the literature. In the case of nondeterministic finite automata on finite words (NFA), complementation and determinization have the same state complexity, namely Theta(2^n) where n is the state size. The same similarity between determinization and complementation was found for Buchi automata, where both operations were shown to have 2^\Theta(n lg n) state complexity. An intriguing question is whether there exists a type of omega-automata whose determinization is considerably harder than its complementation. In this paper, we show that for all common types of omega-automata, the determinization problem has the same state complexity as the corresponding complementation problem at the granularity of 2^\Theta(.).Comment: In Proceedings GandALF 2012, arXiv:1210.202
    corecore